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Abstract--A hybrid numerical algorithm of the Laplace transform technique and the control-volume 
method is proposed to simultaneously estimate the temperature-dependent thermal conductivity and heat 
capacity from temperature measurements inside the material. But, the functional forms of the thermal 
conductivity and heat capacity are unknown a priori. The whole domain is divided into several sub-layers 
and then the thermal properties in each sub-layer are assumed to be linear functional forms of temperature 
before performing the inverse calculation. The accuracy and efficiency of the predicted results can be 
evidenced from various illustrated cases using simulated exact and inexact temperature measurements 
obtained within the medium. Results show that good estimations on the thermal properties can be obtained 
from the knowledge of the transient temperature recordings only at two selected locations. The advantage 
of the present method is that the relation between the thermal properties and temperature can be determined 
for various types of boundary conditions even though the early temperature data cannot be obtained. 

© 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Quantitative understanding of the heat transfer pro- 
cesses occurring in the industrial applications requires 
accurate knowledge of the thermal properties of the 
material. In practical situations measurements are 
often made of temperature, displacement, etc. After- 
ward, these measvLrements are fitted and then physical 
quantities or surface conditions may be estimated by 
using these curve-Stted measurements. Such problems 
are called inverse problems and have become an inter- 
esting subject recently. To data, various methods have 
been developed far the analysis of the inverse heat 
conduction problems involving the estimation of ther- 
mophysical properties from measured temperatures 
inside the mater:ial [1-13]. Beck and A1-Araji [1] 
applied the simple transient method to estimate the 
specific heat, thermal diffusivity and contact con- 
ductance. In this work the thermal conductivity is 
assumed to be constant or a linear function of tem- 
perature. Fukai et al. [2] used the nonlinear least- 
squares method to simultaneously estimate the ther- 
mal conductivity and specific heat. Flach and t~zisik 
[3] and Huang and 0zisik [5], respectively, employed 
the least-squares method and a direct integration 
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approach to estimate spatially varying thermal con- 
ductivity and heat capacity. Afterward, Huang and 
Ozisik [6] again applied a direct integration approach 
to estimate temperature-dependent thermal con- 
ductivity and heat capacity. Tervola [4] applied the 
finite element method in conjunction with the Dav- 
idon-Fletcher-Powell method to determine tem- 
perature-dependent thermal conductivity. It can be 
found that nine thermocouples were required in his 
work. His method also had some disadvantages that 
it must take quite a lot of computer time to obtain 
the estimation of the thermal conductivity, and the 
functional form of the thermal conductivity in the 
whole temperature interval must be given. In addition, 
his method was also sensitive to the selected locations 
of the thermocouples. This is unrealistic in real appli- 
cations because the exact functional form of ther- 
mophysical properties is difficult to be defined before 
making the estimation. It can be found from these 
previous works [3-6] that good initial guesses were 
required to obtain the accurate predictions. Recently, 
Huang and co-workers [9, 10] utilized the conjugate 
gradient method to estimate the temperature-depen- 
dent thermal conductivity k(T) with Ax = 0.1 and 
At = 0.1 and to simultaneously estimate the heat 
capacity C(T) and k(T) with Ax = 0.1 and At = 0.02. 
It can be seen from Ref. [9] that at least two ther- 
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NOMENCLATURE 

heat capacity per unit volume T 
reference heat capacity per unit if 
volume 7" 
average of the absolute values of the 
relative errors for C T~ 
thermal conductivity Tcu r 

reference thermal conductivity Tex a 

average of the absolute values of the T~ n 
relative errors for k Tme a 

distance between two nodes x 
thickness of the slab z 
number of sub-layers 
total number of nodes 
Laplace transform parameter 
surface heat flux 
number of temperature sensors 
number of time readings 
time 

temperature 
transformed temperature 
initially guessed temperature or 
previously iterated temperature 
calculated temperature 
curve-fitted temperature 
exact temperature 
initial temperature 
measured temperature 
space coordinate 
total number of estimated coefficients. 

Greek symbols 
fl coefficient for the thermal conductivity 

random variable 
a standard deviation 

coefficient for the heat capacity. 

mocouples were used in the experimental apparatus 
for estimating k(T). The advantage of these two works 
[9, 10] was that no prior information was used for the 
functional forms of the unknown thermal con- 
ductivity and heat capacity in inverse calculations. 
However, their disadvantage [9, 10] was that the 
boundary conditions must be subjected to the pre- 
scribed constant heat flux and two temperature 
measurements must be recorded at the locations near 
the boundaries of the tested material. Lam and Yeung 
[11] and Yeung and Lam [12] applied a second-order 
finite difference approximation and two finite differ- 
ence procedures to estimate the thermal conductivity 
in a one-dimensional heat conduction domain. The 
key feature of these approaches was that a priori 
knowledge of the functional form for the unknown 
thermal conductivity was not required in inverse cal- 
culations. 

Chen et al. [13] even used the hybrid application 
of the Laplace transform technique and the finite- 
difference method to estimate the temperature-depen- 
dent thermal conductivity using measured nodal tem- 
peratures inside the material at any specified time. 
However, at least five thermocouples must be inserted 
into the tested material in order to obtain a more 
accurate estimation of k(T). As stated by Tervola [4], 
it is better to seek the thermal properties in the whole 
temperature interval provided that only a few ther- 
mocouples are required to measure temperature. 
Thus, the present study applies the hybrid application 
of the Laplace transform technique and the control- 
volume method to simultaneously estimate the 
unknown thermal conductivity and heat capacity of a 
homogeneous material from temperature measure- 
ments. In performing the numerical simulation, the 

tested material is divided into several sub-layers. Ther- 
mophysical properties in each sub-layer are assumed 
to be a linear function of temperature. The initially 
guessed values of the thermal properties for each sub- 
layer can arbitrarily be given before performing the 
inverse calculation. The computational procedure for 
the estimation of the thermal conductivity and heat 
capacity is performed repeatedly until the sum of the 
squares of the deviations between the calculated and 
measured temperatures is minimum. 

To evidence the accuracy of the present numerical 
algorithm in simultaneously estimating the tem- 
perature-dependent thermal conductivity and heat 
capacity per unit volume from temperature measure- 
ments, an example with temperature-dependent ther- 
mal properties is illustrated. In scientific and engin- 
eering experiments, the measurement of temperature 
is, in general, somewhat inaccurate. This may be due 
to human error, but more often, it is due to inherent 
limitations in the equipment being used to make the 
measurements. In the inverse heat conduction prob- 
lem (IHCP), slight inaccuracies in the measured 
interior temperatures can affect the accuracy of esti- 
mated thermal properties. Thus, the effect of measure- 
ment errors on the estimation of the thermal con- 
ductivity and heat capacity will be investigated in the 
present analysis. 

MATHEMATICAL FORMULATION 

Consider a one-dimensional homogeneous slab 
with thickness L which is initially at temperature Ti,. 
The thermal conductivity k(T) and heat capacity per 
unit volume C(T) are unknown and will be deter- 
mined. Various types of boundary conditions may be 
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Fig. 1. Thermocouple arrangement for r temperature measurements. 
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involved in the present study. However, we select the 
problem that the boundary  surface at x = 0 is sub- 
jected to a prescribed constant  heat flux q and the 
other boundary surface at x = L is kept insulated to 
illustrate the efficiency and accuracy of the present 
numerical algorithm. The governing differential equa- 
tion of this problem can be expressed as 

C(T) = ~ x  k ( T ) ~ x  f o r O < x  < L , t > O  

(1) 

with boundary  conditions in the following forms : 

OT 
- - k ~ x =  q a t x = 0  (2) 

OT 
~--~=0 a t x = L  (3) 

and the initial condit ion 

T(x, 0) = Ti,. (4) 

For the direct heat conduction problem, the tem- 
perature field in the slab as a function of space and 
time can be determined provided that all thermal 
properties of the slab are given. Conversely, unknown 
thermal properties need to be estimated unless 
additional information on temperature in the slab is 
given. To obtain the additional information, the tem- 
perature histories at some locations are usually mea- 
sured in the s lab  It is assumed that r thermocouples 
are used to record the temperature information at 
some selected locations, as shown in Fig. 1. The tem- 
perature histories taken from thermocouples are 
denoted by Tmea(xi, tj), i = 1 . . . . .  r and j = 1 . . . . .  s, 
where s denotes the number  of the time readings. 

The measured temperature data, Tm,~, used in the 
present inverse analysis of the thermal conductivity 
and heat capacity can be determined with respect to 
the exact temperature solution of the direct heat con- 
duction problem with the given thermal conductivity 
and heat capaciLy per unit  volume, Toxa- However, 
owing to experimental uncertainty, Tmoa should con- 
tain the measurement error. Thus, T¢~a should be 
modified by adding small random errors to simulate 
experimental measurements. On the other hand, Tm~a 
can be expressed as 

Tree a = Tex a + ~0"  (5) 

where the product of ea represents the temperature 
measurement error and is assumed to be within 
-0.05Toxa to 0.05T, x, in the present study, e is a ran- 

dom variable that can be generated by subroutine 
D R N N O R  of the IMSL [14] and lies in the range from 
-2 .576  to 2.576 for normally distributed errors with 
zero mean and 99% confidence bounds, a is the stan- 
dard deviation of the temperature measurements with 
respect to the exact temperature data and is defined 
as  

O" ~ { ~ 1  i____~ 1 (rmea(Xi'tj)--Texa(Xi'tj))2]/(rXs)} 1/2" 
(6) 

In real industrial applications, the actual measured 
temperature profiles often exhibit random oscillations 
owing to measurement errors. Based on the least- 
squares method, a polynomial function is used to fit 
the measured temperature data [15]. 

NUMERICAL ALGORITHM 

In the present study, the slab is first divided into 
several sub-layers and then the thermal conductivity 
k,(T) and heat capacity C,(T) are assumed to vary 
linearly with temperature in each sub-layer. On the 
other hand, the functional form of k,(T) and C,(T) in 
each sub-layer can be assumed to be 

ki(T) = koi(1 +fliT) and C,(T) = C01(1 +TIT) 

for i th layer ,  i = 1 , 2  . . . . .  m (7) 

where m is the number  of layers, k0 and Co are the 
referenced thermal conductivity and heat capacity per 
unit  volume, respectively, fll and Yi are coefficients 
corresponding to thermal conductivity and heat 
capacity per unit  volume. Obviously, the requirement 
that the thermal properties at the interface between 
two adjacent layers are matched should be satisfied, 
i.e., ke = ke+l and Ce = Ce+l. Thus, k0~ and Coe, 
e = 2, 3 , . . . ,  m can be obtained as 

ko = ko , 1 -~-fle_lUe 1 +Te-lUe 
e " l+fl~Ue and C0e=C0e , 1-+-TeU~ ' 

e = 2,3 . . . . .  m (8) 

where Ue denotes the interface temperature between 
the eth layer and the (e+  1)th layer. It is observed 
from equation (8) that 2 (m+ 1) unknown variables, { 
k0,,  fll . . . . .  tim, Co,, 7t . . . . .  7m}, will be estimated and 
can be expressed as 

{Yi}~=, = {ko,,fl~ . . . . .  flm, Co,,])l  . . . . .  ~m} (9) 

where z = 2(m+ 1), 
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Owing to the above assumptions, the hybrid appli- 
cation of the Laplace transform technique and the 
control-volume method proposed by Chert and Lin 
[16] can be used to solve the present problem. First, 
equations (1) and (2) are rewritten as 

O2K OH 
Ox 2 c~t f o r O < x < L , t > O  

OK 
ax q at x 0 

where K and H are defined as 

K(T) = ~k(T)dT and H(T) = IC(T)dT. (12) 

The Laplace transforms of equations (3), (10) and (11) 
with respect to t are 

d2R 
- -  - p / ~  = - H ( r i . )  
dx 2 

f o r O < x < L  

dR q 
at 

dx p 
x = 0  

and 

m - - ~  0 
dx 

at x = L 

where / ( , /q  and /~, respectively, denote the Laplace 
transform of K, H and T. p is the Laplace transform 
parameter. 

The linearization forms of the function /~ and /7 
using the Taylor's series approximation are [16] 

g = k(;r)f+ ~ [K(T)-k(T)~ 

and 

17= C(T)T+ ~[H(T)-C@)T] (17) 

where T is the initially guessed temperature or pre- 
viously iterated temperature. 

Owing to the application of the control-volume 
method, the integration of equation (13) over a typical 
control volume [x/-l/2, xj+ 1/2] can be written as 

- -  / 4 d x  d~ (/~)~=x,++/2 d ~ p t  xj+'/2 - Ux (KL=+-'/~ o+-,J~ 

f 
xj + l/2 

= - -  H(Ti,) dx (18) 
Ox+-V2 

where l is the distance between two nodes and is taken 
as uniform in the present study. 

T within the interval [xj_,xj+d can be approxi- 
mated in terms of the shape functions and unknowns 
transformed nodal temperatures as 

T ( x )  = x - x j - 1  ~-Jf- x j - -  x T j_  I for xe[Xj_l,Xj] 
l - -7--  

xJ+'-x ~+x-x+T/+ forxe[x, xj+l]. (19) 

Similarly, T within the interval [xj_ j, xj+ i] can also be 
(10) approximated in the same form as equation (19). 

Substituting equations (16), (17) and (19) in con- 
junction with equations (7) and (8) into equation (18) 

(11) yields an algebraic equation for each interior node as 

u/~_,+v/~+wj~+,=gj, j = 2 , 3  . . . . .  n - 1  (20) 

where n is the total number of nodes. The coefficients 
uj, vj, w~ and 9j for nodes within the eth layer are 

+ = k0Xl +fleL-i)  

C°eP/2 [1 + 3 ( 2 L +  L - ' ) ]  8 (21a) 

(13) 
v+= - 2kogl +/~e~) 

(14) C°epl2~ iF- ] 
~- (2Tj- l L6+ 7e - + 14~j+ 2Ti+ l ) (21b) 

wj = k 0 ¢ ( 1  + / ~ e ~ +  J) 

C°~pl2[-'~- ~ ( 2 ~ +  ~j+l)] (15) Ll + (21c) 

and 

g, = ~ C r L , - 2 T ~ +  ~7+0 

-Coel2(l+yeTin)Tin C°~--~-Tel2(T 2 , + 4 g  , g  
48 - - ( 1 6 )  

+ 1 4 T ~ + 4 L L + , + / ' ~ + ,  ). (21d) 

The coefficients uj, vj, wj and 9/for nodes at the inter- 
face between the eth layer and the (e+ t)th layer are 

l, l,] 

Yj = -koe(l+~e~')-koe+l( 1 - ~ e + l L )  

CoeP 12 ~ 7e - 1 + 7 ~ ) ]  
Is+  ~(2rj_ 

C°e81plZI3± Te+l+7T 2-  q T ~ - t  ,+ ~+,)J 

wj = k0e+,(1 +/~+,L+,) 

and 

(22a) 

(22b) 

(22c) 
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1 
gj = ~ [koefle( ~jj- L -- ~j ) + koe + ,fie+ l ( ~ l  -- ~j2)] 

P 

l 2 
2 [C0~(1 --~ 7eZin)-J - C~+,(1 + %+, T~.)]T~, 

l 2 
[Ce~)e(~2 l +4~._ ,  L+7~) 

+ C e + , Y e + , C , ~ + 4 ~ + , + ~ + , ) ] .  (22d) 

The algebraic equations for nodes on the boundary 
surfaces at x = 0 and x = L can also be obtained in 
the similar way as 

Vl 7~1 -~- W| T2 = el (23) 

and 

ufl~_~ + v , L  = 9, (24) 

where 

Colpl2[- .+_ ~ ( 7 ~  l 2~2)] 
v, = -k0 , (1  -~-i~, ~/~l) - - v - L  3 + 

(25a) 

Colpl 2 F. + ]P2)] 
w, = ko,(1 +f l ,  7~2) - ~ - - - - [ 1  + 3 (27~1 

3 

(25b) 

Coil z 
g~ = --~-p ( ~ -  7~1)-- ~ - -  (I + 7, T~,) Ti, 

lq 
C°'T'1248 ( 7 ~ + 4 T , ~ P 2 +  ~ ) -  P (25c) 

and 

C°mpl2 [-" ~ - ( T , - i  + 2T,)]  u. = ko,.(1 -~-flm~n_l) - ~ - L  1 + ~)m 

(26a) 

v. - -kom(1 + B , . L ) -  ~ -  3 +  ~ - ( 2 r . _ ,  + 7 L )  

(26b) 

Corn 12 
g .  = ~(~_ , -  ~)- ----~-- (1-1- y,. T~n) Tin 

C°'~'~ml2(~_ + 4 7 ~ . _ , T . + 7 ~ ) .  (26C) 
48 

The rearrangement of equations (20), (23) and (24) 
can yield the following matrix equation. 

[A]{ ~ = {f} (27) 

where [A] is an n x n band matr ix containing the 
Laplace t ransform parameter  p. {T-'} is an n x 1 matr ix 
representing the unknown nodal  temperatures in the 
t ransform domain  and {~ is an n x 1 matrix rep- 
resenting the forcing terms. The calculated nodal  tem- 

peratures can be obtained from equation (27) by using 
the Gaussian elimination algori thm and the numerical 
inversion of  Laplace t ransform [17] provided that  the 
estimated thermal conductivity and heat capacity are 
given. 

In the present study, the least-squares minimization 
technique will be applied to minimize the sum of  the 
squares of  the deviations between the calculated and 
curve-fitted nodal  temperatures.  This implies that  the 
function 

F(Y,. Y2 . . . . .  Y~) ~ (Tc.~., - T = cur,i)2 (28) 
i=1 

is to be minimized. TCur,/, i = 1 , 2 , . . . ,  z, is determined 
from the curve-fitted temperature profile. The esti- 
mated values of  {Yi}~=~ are determined until 
F(]11, Y2 . . . . .  Y,) is minimum. The computat ional  pro- 
cedures for estimating the unknown coefficients, 
{ Y/}~= 1, are described as follows. 

The initial guesses of { Yi}~= ~ are chosen arbitrarily. 
Afterward,  the calculated temperature data  cor- 
responding to the specified time, {T=~,i}~= ~, can be 
determined from equation (27). Differences between 
Tcur,i and T~l,~ are expressed as 

e~ = Tca~,/- To,rE, i --- 1,2 . . . . .  z. (29) 

Corrections {dg}~= ~ for { Yi}~= 1 are introduced in 
order to minimize the values of  e~. Thus the updated 
values of the estimated coefficients ]1,. can be written 
as 

Y~ = Y* + d,~o., i , j  = 1,2 . . . . .  z (30) 

where Y* denotes the initially guessed value or pre- 
viously predicted value of  the estimated coefficient. 
The symbol 60 is Kronecker  delta and is defined as 

{; if/  
6 o = (31) 

i f i  ~ j "  

The new calculated temperatures 
{T¢~,o,j= 1,2 . . . . .  z}~= I with respect to Yg given by 
equation (30) can also be determined from equation 
(27). Accordingly,  differences between the new cal- 
culated temperatures and curve-fitted temperatures 
can be written as 

e o = Tc~l,o-- T¢~,t, i , j  = 1,2 . . . . .  z. (32) 

Differences between e/ and e o with respect to cor- 
rections {d/}~= ~ are defined as 

o9~ = (eij-ei)/di ,  i , j  = 1,2 . . . . .  z. (33) 

The total  differences between T¢a~,~ and T¢,~,i can be 
written as 

2 i =  ~ e ~ ,  j =  1,2 . . . . .  z. (34) 
]=l 

The sum of  22 can be expressed as 
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E = ~ 22. (35) 
i--I 

To determine the desired corrections for the guessed 
thermal conductivity and heat capacity, minimizing E 
with respect to {d~}f=~ will be performed. Differ- 
entiating E with respect to each correction yields 

~, ~ (ogj,%kd~)= -- ~ o9;~e, k= 1,2 . . . . .  z. 
i=l j--I  j=l  

(36) 

Equation (36) is a set of  z algebraic equations. New 
corrections {dg}Z_~ can be obtained by solving equa- 
tion (36). The above procedures are repeated until the 
differences between the calculated temperatures and 
the curve-fitted temperatures are all less than a tol- 
erable value. In the present study, the tolerable value 
is chosen a s  1 0  - 4  . 

RESULTS AND DISCUSSION 

To assess the accuracy of  the present numerical 
algorithm in predicting the unknown thermal con- 
ductivity and heat capacity from the knowledge of  
temporal temperature recordings at selected locations, 
an example involving the prediction of  temperature- 
dependent thermal properties will be illustrated. In 
the meantime, the effects of  measurement errors, the 
number of  thermocouples and time readings on the 
estimation of  the thermal conductivity and heat 
capacity are also examined. For  the convenience of  
numerical analysis, the thickness of  the slab, L, and 
surface heat flux, q, are taken as unity. The initial 
t e m p e r a t u r e ,  Tin , is assumed to be zero. In all the test 
cases considered here, the initial guesses of  estimated 
coefficients, { Yi}f-J, used to begin the iteration are 
taken as unity. First, assume that 11 temperature sen- 
sors with spacing Ax = 0,1 are inserted into the tested 
material to record the temperature data. For  each 
temperature sensor, 21 temperature data are read 
from t = 0.1 to t = 2.1 with the time interval At = 0.1. 
This implies that 231 temperature data will be 
obtained. 

The inverse problem that the exact thermal con- 
ductivity k(T) is a combination of  the exponential 
function and a second-order polynomial with tem- 
perature, and the exact heat capacity C(T) is a second- 
order polynomial with temperature is illustrated. The 
functional forms of  k(T) and C(T) are assumed as 
follows. 

k(T)= l + T 2 + e x p ( T )  and C(T)= I + T + T  2. 

(37) 

Figures 2 and 3, respectively, show the estimated 
results of  the thermal conductivity and heat capacity 
using 11 temperature sensors with spacing Ax = 0.1 
for a = 0 and a = 0.005. Numerical  results shown in 
these two figures are obtained under the condit ion 

that the slab is divided into 10 sub-layers with equal 
space. This implies that 22 unknown coefficients are 
to be determined. Thus we must take 22 measured 
temperature data recorded at any two specified time 
tj and t2 to determine these unknown coefficients. For  
the convenience of  numerical analysis, assume that 
the temperature information is obtained at t~ -- 1.0 
and t2 = 2.0. It can be seen from Figs. 2 and 3 that 
the estimated thermal properties are in good agree- 
ment with the exact solutions for the case of  a = 0 or 
for the assumption of  no measurement error. 
However,  the inaccuracy of  the estimated thermal 
properties for the case of  a = 0.005 will occur owing 
to the measurement errors of  the experiment. The 
average of  the absolute values of  the relative errors 
between the exact values and the estimated values for 
k(T) and C(T) is, respectively, defined as 

kex(Xi, tj) - ke~(xi, 
k~rr=E=~i~=, kex(Xi, tj) tJ) ]/(r×s)×lO0% 

(38a) 

and 

Cerr ~ I . £  ~ Cex(Xi'tj)-Ces(Xi'lj)l/ 
=1i=1 Cex(Xi, tj) ( r x s )  x 100% 

(38b) 

where the subscripts es and ex denote the estimated 
and exact values, respectively. 

The values of  k~rr and Cer r for 11 temperature sensors 
a re  ker r ~-- 0.005% and Cer r = 0.007% for a = 0 and 
kerr = 0.974% and C e r  r = 1.61% f o r a  = 0.005, respec- 
tively. For  practical application, the variations of  the 
estimated thermal conductivity k,s(T) and estimated 
heat capacity per unit volume C,s(T) with temperature 
shown in Figs. 2 and 3 are presented using the simple 
general expressions. These empirical correlations 
which represent all of  the predicted results within 
0.2% in the whole temperature interval are 
constructed. These correlations can be expressed as 

ke~(T) = 1.35609 + 8 .9148T-  20.4444T 2 

+ 22.7374T 3 -  7.80911T ~ (39) 

and 

Ces(T) = - 7.32923 + 44.0632 T- -  79.8718 T 2 

+65.6378T 3 -19 .4672T  4. (40) 

To investigate the effect of  the temperature data 
obtained from various combinations of  two specified 
times, tl and t2, on the estimation of  thermal proper- 
ties, the predicted results of  the thermal conductivity 
and heat capacity per unit volume using 11 tem- 
perature sensors are shown in Table 1. No  obvious 
difference between them is found. This implies that 
the effect of  the selection of  tl and t2 on the estimation 
o f  thermal properties using the present numerical 
method is little. To further evidence the efficiency of  
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Fig. 2. Comparison of the exact and predicted values of k(T). 
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Temperature, T 

Fig. 3. Comparison of the exact and predicted values of C(T). 

1.2 

the present  numerical  s imulat ion for the thermal  
propert ies,  the effect of  t empera ture  histories recorded 
at two selected locations,  x~ and  x2 f rom t = 0.1 to 
t = 2.1 with the t ime step At = 0.2 on  the es t imated 
results is also investigated, as shown in Table  2. 

Results show tha t  the es t imated results ob ta ined  f rom 
the present  me thod  are insensitive to the inserted 
locat ions of  the thermocouples  even for  the case with 
the measurement  error.  

In all computa t ions  of  this i l lustrated example,  
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Table 1. Effect of(6, t2) on the estimations of k(T) and C(T) 

a = 0 a = 0.005 

Acknowledgement--The research reported here was per- 
formed under the auspices of the National Science Council 
under Grant No. NSC 86-2212-E-006-097, Taiwan. 

(t,, t2) ko** (%) Cer r (%) ker r (%) Cer r (%)  

(0.1, 0.2) 0.043 0.050 1.001 1.771 
(0.1, 0.5) 0.038 0.044 0.998 1.763 
(0.1, 1.0) 0.005 0.007 0.987 1.610 
(0.1, 2.1) 0.001 0.001 0.965 1.411 
(0.5, 1.0) 0.006 0.009 0.976 1.611 
(1.0, 2.1) 0.004 0.007 0.971 1.526 
(2.0, 2.1) 0.043 0.050 1.000 1.732 

Table 2. Effect of (x, x2) on the estimations of k(T) and C(T) 

a = 0 ~r = 0.005 

(Xl, X2) kerr (%) Cerr (%) kerr (%) Cerr (%) 

(0.0, 0.1) 0.082 0.090 1.230 1.785 
(0.0, 0.5) 0.071 0.077 1.213 1.696 
(0.0, 1.0) 0.055 0.060 1.191 1.547 
(0.1, 0.2) 0.082 0.087 1.191 1.784 
(0.1, 0.9) 0.058 0.063 1.196 1.578 
(0.5, 0.6) 0.081 0.086 1.227 1.783 
(0.5, 0.9) 0.071 0.078 1.211 1.696 

seven iterations are required to obtain the predicted 
results of  the thermal conductivity and heat capacity. 
The C P U  time for a PC-586 computer  with pentium- 
100 is about  40 s. 

CONCLUSIONS 

The present study proposes a numerical simulation 
involving the Laplace transform technique and the 
control-volume method in conjunction with the least- 
square method to simultaneously estimate the 
unknown thermal conductivity and unknown heat 
capacity per unit volume from temperature measure- 
ments inside the tested material. Owing to the appli- 
cation of  the Laplace transform scheme, the thermal 
conductivity and heat capacity can be estimated sim- 
ultaneously even though the early temperature data 
cannot be recorded. It is found from the illustrated 
example that the present numerical algorithm can give 
a good estimation of  the thermal conductivity and 
heat capacity simultaneously even for the problem 
with temperature measurement errors. The advan- 
tages of  the present numerical algorithm are not  very 
sensitive to the choice of  initial guesses, measurement 
locations and measurement times. It is worth men- 
tioning that good estimations on the thermal con- 
ductivity and heat capacity can also be obtained only 
using two temperature sensors. 
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